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a b s t r a c t

In future apartment complexes, highpenetration of electric vehicles (EVs)may cause to significantly increase
electricity load at certain times, and the demand for uncoordinated EV charging power may significantly
affect the stability of the apartment-level power grid. In order to efficiently accommodate the significant
charging demand from a large number of EVs in apartment complexes, we propose an apartment-level EV
charging coordination scheme to not only reduce the peak EV charging load but also minimize the
apartment-level EV charging payment, and then we validate it through various case studies. To be specific,
we compare the performance of the proposed EV charging coordination scheme with that of a typical as-
soon-as-possible (ASAP) charging schemeand a randomcharging scheme in terms of peak-to-average power
ratio (PAPR), relative charging duration (RCD), and total charging payment. It is observed that the proposed
coordination schememanages the apartment-level powergridmore stable, andEVowners in this apartment-
level power grid can obtain economic benefits by participating in the EV charging coordination.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Recently, we have faced serious climate changes and green-
house gas emission problems due to overuse of fossil fuels. One
of promising solutions for mitigating such climate changes and
reducing greenhouse gas emissions is to use eco-friendly vehicles
such as hybrid electric vehicles (HEVs), plug-in hybrid electric
vehicles (PHEVs), and battery electric vehicles (BEVs) using clean
energy [1]. In the near future, such EVs are expected to gradually
replace the existing gasoline/diesel-based vehicles, and the pene-
tration of EVs is expected to be accelerated with approximately
60% per year [2,3].

However, another technical challenge due to a significant
charging demand of EVs (i.e., 497 W (level 1 charging) and
856 W (level 2 charging) of average per-household incremental
peak demand for an EV penetration of 50% [4]) is also expected
to be required in the existing power grid, and, thus, a number of
related studies on the effect of increasing EV charging loads and
demands on the existing power grid have been investigated in
the literature [5–11]. Mu et al. [7] investigated the impact of large
scale deployment of plug-in EVs on urban distribution networks
based on the developed a spatial-temporal model. They validated
the effectiveness of the spatial–temporal model by comparing
‘dumb’ charging and ‘smart’ charging schemes under different EV
penetration levels. Neaimeh et al. [8] focused on the impact of
uncontrolled and clustered charging of EVs on the electricity distri-
bution networks, where it was shown that the substantial collabo-
ration between distribution network operators and charging
infrastructure operators can provide more opportunities for
demand-side management, and the distribution networks can
accommodate higher EV penetrations accordingly. Munkhammar
et al. [9] considered on the impact of the electricity demand and
generation patterns combined with household electricity con-
sumption, EV charging and photovoltaic (PV) power generation
under a future environment in Westminster, UK, where it was
shown that the EV home-charging increases the electricity use by
between 14% and 61% depending on the number of occupants.

On the other hand, more than half of people live in apartment
complexes in South Korea, which exhibits a unique feature com-
pared with the life style in other countries [12]. In addition, many
people living in cities do not have their dedicated parking lots and
personal EV chargers. EV owners in cities (apartment complexes)
may need to share both parking lots and EV chargers. In addition,
the apartment complex needs to manage the electricity power
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usage under a certain power capacity limit since each apartment
complex generally contracts with an electric power company to
set a power capacity limit. If the electricity usage exceeds the con-
tracted power limit, the apartment complex should pay extra pen-
alty charge [13]. Thus, it becomes very difficult to manage and
control the power usage of the apartment complex as the number
of EVs and the corresponding charging demand increases in the
near future.

Meanwhile, Korea Electric Power Corporation (KEPCO)
announced a plan to install 30000 EV chargers in 4000 apartment
complexes to improve the EV charging infrastructure across the
country in South Korea [14]. Through this project, it is expected
that the access to EV chargers is more convenient in apartment
complexes. However, the related EV charging management and
coordination technologies are still immature and the relevant tech-
niques based on information and communication technologies
(ICTs) are needed in apartment complex environments with a large
number of EVs.

Studies on EV charging coordination are in general categorized
into centralized coordination schemes [15–18], and decentralized
coordination schemes [19–22] according to operation method. In
the centralized coordination schemes, the charging operation cen-
ter controls each EV to optimize EV charging load profile in a cen-
tralized manner. Wang et al. [23] investigated a multi-agent
system with particle swarm optimization and a fuzzy controller
for the integration of the PHEVs in smart buildings. Yagcitekin
and Uzunoglu [24] also proposed a centralized charging manage-
ment algorithm which routes the EVs to a suitable charging point,
decreases the charging costs, and prevents transformers from over-
loading. Xu et al. [15] proposed a centralized hierarchical coordi-
nated charging framework for the PHEVs across multiple
aggregators, which not only minimizes the electricity cost but also
effectively control the system peak load. Majidpour et al. [25] pro-
posed EV charging load forecasting schemes based on customer
profiles or station measurements, and it was shown that the fore-
casted EV charging load information is useful for the charging coor-
dination schemes. Wu et al. [18] proposed a hierarchical charging
scheduling and control framework to enable EVs for grid services
while satisfying vehicle owners’ travel needs. In short, the central
coordinator determines the optimal power allocation for a look-
ahead time window based on grid services to be provided, and
helps to reduce computational complexity and communication
requirement compared with existing methods.

On the other hand, in the decentralized coordination schemes,
each EV determines its charging rate based on the control signal
broadcast by the operation center in a decentralized manner. Zhou
and Cai [19] proposed a decentralized random access framework in
order to avoid both bus load congestion and a voltage drop prob-
lem in the distribution power grid, where each EV adjusts its
charging rate based on the proposed access probability. Ma et al.
[22] proposed a decentralized charging control scheme and proved
the optimality of the proposed scheme in limited cases where all
EVs have identical arrival time, departure time, required amount
of charging, and charging rate. Latifi et al. [26] proposed a game-
theoretic decentralized EV charging coordination scheme to mini-
mize EV owners’ payments while maximizing potential capacity
for ancillary services.

In the literature, there exist studies on optimal EV charging per-
formances in which the charging rate of each EV is optimally
adjusted [16,27,20,28,29]. Richardson et al. [16] demonstrated
how the charging rate of EV can improve the utilization of existing
networks, where an optimal centralized charging algorithm was
proposed to maximize total delivered energy with a weighted
objective function according to the location and the current
state-of-charge of EVs. However, it did not provide economical
charging service since they did not consider time-of-use (TOU)
electricity price in the charging algorithm. Gan et al. [20] proposed
an optimal decentralized protocol for EV charging, which EVs
choose their own charging profile based on control signal instead
of being instructed by a centralized infrastructure. However, each
EV experiences a large number of iterations with a center in order
to determine the charging profile. Moreover, it was assumed that
the center exactly knows all parameters of EVs for solving the opti-
mization problem at the beginning of the scheduling algorithm.
They proposed a real-time operation scheme when the number
of EVs is equal to 20, but it is not guaranteed that the proposed pro-
tocol operate well with a large number of EVs. Sedding et al. [29]
compared three different approaches (heuristic, optimization,
and stochastic programming) to schedule the charging process of
three different electric vehicles fleets (commuters, opportunity,
and commercial fleets) at a common charging infrastructure under
uncertainty.

The conventional charging optimization algorithms have limita-
tions for practical deployment scenarios because the practical EV
chargers cannot control their charging rates dynamically. Instead
of the charging rate control, on–off charging control schemes
[17,21,22] seem to be more feasible for practically deploying coor-
dination mechanisms with a large number of EVs. For instance,
Google developed a smart charging system, in which the charging
power is turned on or off remotely by the aggregator [30].

In this paper, hence, we propose a novel apartment-level EV
charging coordination scheme for a large-scale apartment com-
plex, in which residents participate in EV charging coordination
for pursuing the common profit since the total power usage from
both normal electricity power and EV charging power are required
to be managed under the contracted power capacity. In addition,
EVs in general have sufficient sojourn (slack) time to be fully
charged before their departure. By exploiting the time flexibility,
our proposed charging coordination schemes control charging
actions of a large number of EVs, and effectively shift or distribute
EV charging load to the off-peak period while achieving economi-
cal benefits. This is a main difference of this paper, compared with
[17,21,22], in which each EV owner in a single house pursues an
individual profit (e.g., minimizes individual charging payment
and maximizes individual user-convenience). The proposed
apartment-level EV charging coordination scheme operates based
on the on–off charging control and a charging operation center
(COC) schedules a number of EVs to be charged on each time slot
based on coordination objectives. The proposed scheme requires
a small amount of information exchanges and deals with a less-
complex optimization problem, which enables a real-time charging
coordination even in a large number of EVs. As a result, the pro-
posed EV charging coordination system can manage the
apartment-level power grid more stable, and EV owners in the
apartment can obtain economic benefits by participating in the
EV charging coordination as well. The performance of the proposed
scheme is evaluated in terms of peak load reduction and charging
payment minimization over various cases.

The rest of this paper is organized as follows. In Section 2, we
present a system model considered in this work. In Sections 3,
we propose an apartment-level charging coordination scheme. In
particular, SubSection 3.1 provides a peak load reduction mecha-
nism with a flat electricity price, and SubSection 3.2 provides a
charging payment minimization mechanism with a time-of-use
(TOU) electricity price. We also present case studies in Section 4.
Finally, we draw conclusive remarks in Section 5.
2. System model

Fig. 1 shows an exemplary model of an apartment-level EV
charging system. Electricity in this huge apartment complex is



Fig. 1. An exemplary model of apartment-level EV charging system.

H.S. Jang et al. / Energy & Buildings 223 (2020) 110155 3
supplied through a transformer with a maximum capacity of Ltx.
Even though the maximum power capacity supplied to the apart-
ment complex is Ltx, the apartment complex generally contracts
with an electric power company to set a power capacity limit
called the contracted power capacity Lcontract < Ltx, which is less
than the maximum transformer capacity. Therefore, the apartment
complex needs to manage the electricity power usage under the
contracted power capacity limit.

We consider a total of K EVs with a set of EV indices or identi-
fications (IDs), K ¼ 1; . . . ;Kf g, and they can be coordinated by a
charging operation center (COC). The COC controls and manages
the total electricity load Ltotal ið Þ, which consists of the normal elec-
tricity load Lnormal ið Þ and the EV charging load Lev ið Þ, i.e.,
Ltotal ið Þ ¼ Lnormal ið Þ þ Lev ið Þ on the i-th time slot. It is worth noting
that the total electricity load Ltotal ið Þ should be controlled under
the contracted power level of Lcontract, i.e., Ltotal ið Þ 6 Lcontract.

In the apartment-level EV charging system, each EV charger is
assumed to communicate with the COC through a communication
network in order to exchange EV charging parameter values. The
proposed EV charging coordination scheme utilizes a slotted time
and on–off based charging mechanism. The on–off based charging
mechanism operates by turning the charging power on or off for
each EV charging station during a time slot [30]. Let Nslot denote
the number of time slots per hour (unit: slots/hour), and there
exists 24Nslot time slots in a day, with an index
i 2 I ¼ 1;2; . . . ;24Nslotf g. For the next day, the time slot index is
added by 24Nslot. One time slot occupies Tslot ¼ 60=Nslot (unit: min-
utes/slot), and Tslot is called the slot interval time.

The k-th EV in K ¼ 1; . . . ;Kf g has the following charging
parameters:

� iink : Arrival time slot of the k-th EV,

� ioutk : Departure time slot of the k-th EV (set by the owner),
� icomp:

k : Charging completion time slot of the k-th EV,

� Sk ¼ ioutk � iink : The number of sojourn time slots of the k-th EV,
� lk : Charging priority (preference) level of the k-th EV (set by
the owner),

� SoCin
k : State-of-charge (SoC) level at the arrival of the k-th EV

(unit: 0 � 1),
� SoCout

k : SoC level at the departure of the k-th EV (unit: 0 � 1),

� SoCi
k : SoC level at the i-th time slot of the k-th EV (unit: 0 � 1),

� SoCtarget
k : Target SoC level at the departure of the k-th EV (set by

the owner and unit: 0 � 1),
� Ek : Battery energy capacity of the k-th EV (unit: kWh),
� rk : Charging power rate of the k-th EV (unit: kW),
� Nk ið Þ : The required number of charging time slots of the k-th EV
at the i-th time slot, which is calculated as
Nk ið Þ ¼
Nslot � Ek SoCtarget

k � SoCi
k

� �
rk

2666
3777;
where d�e is the ceiling function.

� Rk ¼ Nk ioutk

� �
: The remaining (uncompleted) number of charg-

ing time slots of the k-th EV at the departure time slot ioutk ,
which is calculated as
Rk ¼ Nk ioutk

� �
¼ Nslot � Ek SoCtarget

k � SoCout
k

� �
rk

& ’
:

The charging priority (preference) level lk is simply classified

into three fixed levels, i.e., lk 2 llow;lmid;lhigh

n o
, and the unit of

lk is set in terms of the number of time slots. Thus, each EV owner
chooses an EV’s charging priority level among the three levels.
Throughout this paper, we utilize the same index k for the EV char-
ger, which the k-th EV is plugged in.



Each EV charger provides a charging service

during the i-th time slot according to

Broadcast the charging schedule vector

Coordinate EV charging based on Algorithm 1 

(SubSection 3.1) or Algorithm 2 (SubSection 3.2)

Categorize          into

the subset                  and the subset

Calculate and sort the charging time margin

in ascending order, which generates a set

Calculate            , which is the number of EVs

to require charging services on the i-th time slot

Fig. 2. A diagram to summarize the overall steps of the proposed apartment-level
EV charging coordination scheme.
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3. Proposed apartment-level EV charging coordination scheme

In this section, we propose an apartment-level EV charging
coordination scheme, in which the COC explicitly notifies the EVs
of the charging schedule information in a centralized manner using
a charging schedule vector V ið Þ for the i-th time slot. We assume
that all EV chargers have the same charging rate1, i.e.,
rk ¼ g;8k 2 K. Before providing the detailed explanation, Fig. 2 sum-
marizes the overall steps of the proposed apartment-level EV charg-
ing coordination scheme.

When the k-th EV charger starts a charging service, it sends its
charging parameters to the COC. Then, before the i-th time slot, the
COC calculates the number of EVs to require charging services on
the i-th time slot as follows:

Creq ið Þ ¼
X

k2 kj ioutk �ið Þ>0f g
INk ið Þ>0; ð1Þ

where INk ið Þ>0 represents an indicator function to set to 1 if Nk ið Þ > 0,
0 otherwise. For each of Creq ið Þ EVs, the COC calculates the charging
time margin:

Mk ið Þ ¼ ioutk � i
� �

� Nk ið Þ � lk; ð2Þ

where ioutk � i
� �

represents the remaining number of sojourn time

slots, Nk ið Þ denotes the required number of charging time slots
and lk denotes the charging priority level. Then, the COC sorts
the charging time margins in ascending order in order to give faster
charging opportunities for EVs with smaller charging time margins,
and makes the set of sorted charging time margins, M ið Þ, which has
the cardinality of jM ið Þj ¼ Creq ið Þ for the i-th time slot. Thereafter,
M ið Þ is categorized into two subsets Murgent ið Þ and Mnormal ið Þ as
follows:

� A set of charging time margins for urgent EVs:

Murgent ið Þ ¼ Mk ið ÞjMk ið Þ � 0; ioutk � i
� �

> 0;Nk ið Þ > 0;8k
n o

,

� A set of charging time margins for normal

EVs:Mnormal ið Þ ¼ Mk ið ÞjMk ið Þ > 0; ioutk � i
� �

> 0;Nk ið Þ > 0;8k
n o

,

which have cardinalities of jMurgent ið Þj ¼ U ið Þ and
jMnormal ið Þj ¼ X ið Þ ¼ Creq ið Þ � U ið Þ, respectively. For the i-th time slot,
the COC effectively schedules EVs based on two subsets Murgent ið Þ
and Mnormal ið Þ and the corresponding EV IDs, and it generates a set
of charging-scheduled EVs S ið Þ. We will describe the detailed EV
charging scheduling algorithms with a flat electricity price in the
SubSection 3.1 and with a time-of-use (TOU) electricity price in
SubSection 3.2, respectively.

If the k-th EV belongs to S ið Þ, i.e., k 2 S ið Þ, the COC updates
Nk ið Þ ¼ Nk i� 1ð Þ � 1, otherwise, it keeps Nk ið Þ ¼ Nk i� 1ð Þ. Then, it
broadcasts a K-bits charging schedule vector V ið Þ ¼ v1; . . . ;vK½ �
obtained by S ið Þ, in which the k-th bit vk indicates the charging
schedule of the k-th EV (0: unscheduled, 1: scheduled), to all EV
chargers before the i-th time slot. Upon reception of the charging

schedule vector V ið Þ, EV chargers with ioutk � i
� �

> 0 and Nk ið Þ > 0

check whether their schedule indicator bits are 0 or 1. If vk ¼ 1,
the k-th EV charger provides a charging service during the i-th time
slot, otherwise, it does not provide the charging service.
1 In reality, EV chargers may have several charging rates. The COC can configure
multiple EV charger groups based on distinct charging rates such as slow charging
rate g1, medium charging rate g2, and fast charging rate g3. Thus, the COC
independently coordinates each group of EVs with the same charging rate gn by
the corresponding charging schedule vector Vn .
3.1. Peak load reduction mechanism with a flat electricity rate

In this subsection, we propose a peak load reduction mecha-
nism to reduce or flatten the aggregated peak load of EVs with a
flat electricity price. Here, the flat electricity price represents the
same electricity price on every time slot. Let Lcontract denote the con-
tracted power capacity (kW) of the apartment complex and
Lnormal ið Þ denote the predicted normal electricity load (kW) without
EV loads on the i-th time slot [31–33]. Thus, we can obtain the
time-varying charging capacity limit on the the i-th time slot as
follows:

Climit ið Þ ¼ Lcontract � Lnormal ið Þ
g

� �
; ð3Þ

where b�c is the floor function, and g is the EV charging power rate.
Since the number of charging-scheduled EVs is limited by

Climit ið Þ on the i-th time slot, the COC should effectively select
EVs among Creq ið Þ EVs that need to be charged on the i-th time slot.
To this end, we can consider two cases with
jMurgent ið Þj ¼ U ið Þ; jMnormal ið Þj ¼ Creq ið Þ � U ið Þ, and Climit ið Þ for the
peak load reduction mechanism. If U ið Þ P Climit ið Þ, i.e., the number
of urgent EVs is greater than the charging capacity limit, the COC
schedules only first Climit ið Þ EVs from Murgent ið Þ and yields a set of
charging-scheduled EVs, S ið Þ ¼ ID1; ID2; . . . ; IDClimit ið Þ

� 	
. On the

other hand, if U ið Þ < Climit ið Þ, i.e., the number of urgent EVs is smal-
ler than the charging capacity limit, the COC schedules all U ið Þ EVs
from Murgent ið Þ and first min Climit ið Þ;Creq ið Þ
 �� U ið Þ� �

EVs from
Mnormal ið Þ, and yields a set of charging-scheduled EVs,
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S ið Þ ¼ ID1; ID2; . . . ; IDmin Climit ið Þ;Creq ið Þ½ �
n o

. Algorithm 1 summarizes

this scheduling algorithm for peak load reduction.

Algorithm1 EV charging scheduling algorithm for peak load
reduction

1: Generate two subsets Murgent ið Þ and Mnormal ið Þ.
2: Calculate Climit ið Þ by Eq. (3)
3: if U ið Þ P Climit ið Þ
4: Schedule first Climit ið Þ EVs from Murgent ið Þ
5: S ið Þ ¼ ID1; ID2; . . . ; IDClimit ið Þ

� 	
.

6: else
7: Schedule all U ið Þ EVs from Murgent ið Þ
8: Schedule first min Climit ið Þ;Creq ið Þ
 �� U ið Þ� �

EVs from
Mnormal ið Þ

9: S ið Þ ¼ ID1; ID2; . . . ; IDmin Climit ið Þ;Creq ið Þ½ �
n o

.

10: end if
3.2. Charging payment minimization mechanism with a TOU
electricity rate

In this subsection, we assume a TOU electricity price available
in a power grid. The time-varying charging capacity limit on the
i-th time slot Climit ið Þ is calculated as Eq. (3). In the proposed charg-
ing payment minimization mechanism, urgent EVs in the subset
Murgent ið Þ are always considered to be first charged on the i-th time
slot. Thus, in case of U ið Þ P Climit ið Þ, the COC always schedules first
Climit ið Þ EVs from Murgent ið Þ and yields a set of charging-scheduled
EVs, S ið Þ ¼ ID1; ID2; . . . ; IDClimit ið Þ

� 	
. However, in case of

U ið Þ < Climit ið Þ, the COC can optimally determine the number of
charging-scheduled EVs C ið Þ in a range of
U ið Þ 6 C ið Þ 6 min Creq ið Þ;Climit ið Þ


 �
based on the TOU electricity price

in order to minimize the total apartment-level charging payment.
From the determined result of C ið Þ, the COC schedules charging
for all U ið Þ EVs from Murgent ið Þ and first C ið Þ � U ið Þð Þ EVs from
Mnormal ið Þ, which yields S ið Þ ¼ ID1; ID2; . . . ; IDC ið Þ

� 	
. For the EV

scheduling algorithm, let us first define the predicted charging load
profile on the future iþ jð Þ-th time slot as:bC iþ jð Þ ,

X
k2 kj ioutk �ið Þ>0;Nk ið Þ>0f g

I Nk ið ÞþIkRS ið Þð Þ>j; ð4Þ

where j P 1; I Nk ið ÞþIkRS ið Þð Þ>j is an indicator function to set to 1 if

Nk ið Þ þ IkRS ið Þ
� �

> j, 0, otherwise, and IkRS ið Þ is an indicator function
to set to 1 if k R S ið Þ, 0, otherwise. Especially, I Nk ið ÞþIkRS ið Þð Þ>j is used

to determine whether the charging demand of the k-th EV contin-

ues until the future iþ jð Þ-th time slot or not. In addition, bC iþ jð Þ
depends on the determined set of charging-scheduled EVs S ið Þ
whose cardinality is jS ið Þj ¼ C ið Þ. Using the predicted EV charging

load profile bC iþ jð Þ, the predicted charging payment on the i-th
time slot with a variable C ið Þ is calculated as

PaymentðCðiÞÞ ¼
X
jP1

$ðiþ jÞbCðiþ jÞ þ $ðiÞCðiÞ; ð5Þ

where $ðiÞ denotes the TOU electricity price per EV on the i-th time
slot. Consequently, Algorithm 2 summarizes the EV scheduling algo-
rithm for minimizing total apartment-level charging payment. For
each C 2 U ið Þ þ 1;min Creq ið Þ; Climit ið Þ


 �
 �
, the COC yields a set of

charging-scheduled EVs SC ¼ ID1; ID2; . . . ; IDCf g. According to SC ,
the COC calculates Payment Cð Þ and obtains
Payment Cð ÞjC ¼ U ið Þ þ 1; . . . ;min Creq ið Þ;Climit ið Þ


 �� 	
. Finally, the
COC finds C� with the lowest charging payment Payment C�ð Þ and
determines S

� ið Þ ¼ SC� , and then, the COC generates the charging
schedule vector V ið Þ from S

� ið Þ for the i-th time slot. Especially, on
the off-peak TOU period, the COC does not perform the charging pay-
ment minimization mechanism since, but the peak load reduction
mechanism.

Algorithm2 EV charging scheduling algorithm for minimizing
total apartment-level charging payment

1: Generate two subsets Murgent ið Þ and Mnormal ið Þ.
2: Calculate Climit ið Þ by Eq. (3)
3: if U ið Þ P Climit ið Þ
4: Schedule first Climit ið Þ EVs from Murgent ið Þ
5: S� ið Þ ¼ ID1; ID2; . . . ; IDClimit ið Þ

� 	
6: else
7: for C ¼ U ið Þ þ 1 : min Creq ið Þ;Climit ið Þ


 �
8: Schedule all U ið Þ EVs from Murgent ið Þ
9: Schedule first C � U ið Þð Þ EVs fromMnormal ið Þ
10: SC ¼ ID1; ID2; . . . ; IDCf g
11: bC iþ jð Þ ¼

X
k2 kj ioutk �ið Þ>0f g

I Nk ið ÞþIk2SCð Þ>j

12: Payment ðCÞ ¼ P
jP1

$ðiþ jÞbCðiþ jÞ þ $ðiÞC

13: end for
14: Obtain

Payment Cð ÞjC ¼ U ið Þ þ 1; . . . ;min Creq ið Þ;Climit ið Þ

 �� 	

15: Find C� ¼ argminCPayment Cð Þ
16: S� ið Þ ¼ SC� ¼ ID1; ID2; . . . ; IDC�f g
17: end if
4. Case studies

Table 1 lists the parameters utilized in case studies. We utilize a
time slot interval of 15 min, which corresponds to Nslot ¼ 4 (slots

per hour) [34]. N a; b2
� �

denotes the normal (or Gaussian) distri-

bution with a mean of a and a standard deviation of b. First of
all, we assume that an apartment complex has total 1500 units,
and each unit has approximately 1:33 cars [35]. Then, assuming
an EV penetration rate of 50%, approximately 1000 EVs exist in
the apartment complex. In addition, their arrival times at the EV
chargers are distributed as shown in Fig. 3 [36]. Around 6 pm, it
shows the highest number of EV arrivals. Low-, mid-, and high-
charging priority levels are set to llow ¼ 0;lmid ¼ 2Nslot, and
lhigh ¼ 4Nslot, respectively, and EVs with llow;lmid, and lhigh are
randomly selected with proportions of 20%, 60%, and 20%, respec-
tively, among 1000 EVs.

Fig. 4 shows the normal load profile Lnormal ið Þ [37] corresponding
to the aggregated electricity loads from approximately 1500 house
units in the apartment complex. We assume that this profile is esti-
mated by a load estimation scheme with significantly high accu-
racy. It also shows the contracted power capacity Lcontract, which
is calculated by the fact that each of 1500 units uses 3 kW electric-
ity on average [38], and a common electricity of 500 kW is reserved
for elevators, lightnings, and so on. Thus, approximately 5000 kW
(4500 W + 500 W) is set for the contracted power capacity in the
apartment complex being considered. As described in Eq. (3),
Lnormal ið Þ and Lcontract determine a time-varying charging capacity
limit Climit ið Þ.

We evaluate the performance of the proposed apartment-level
EV charging coordination scheme in terms of peak load reduction
and apartment-level charging payment minimization, compared



Table 1
Simulation parameters and values.

Parameters Values

Transformer capacity (Ltx) 6000 kW
Contracted capacity (Lcontract) 5000 kW

Total number of EVs (K) 1000
EV battery capacity (Ek) 20 � 30 kWh
EV charging rate (rk) 3.5 kW

SoC at the arrival (SoCin
k ) N 0:5;0:22

� �
Target SoC at the departure (SoCtarget

k ) 1

# of time slots per hour (Nslot) 4

# of sojourn time slots (iink � ioutk ) Nslot 	N 13;3:82
� �

Priority levels (llow;lmid;lhigh) 0;2Nslot;4Nslot

EV proportions with llow;lmid;lhigh 20%, 60%, 20%
Flat electricity price per kWh $0.226

Fig. 3. The number of EV arrivals during a single day.

Fig. 4. Contracted power capacity and normal load power profile.
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with those of two schemes: the first one is an ‘as-soon-as-possible
(ASAP)’ scheme, in which each EV is charged up to the required
SoC level as soon as possible, and the second scheme is a ‘random
distribution’ scheme, in which the k-th EV charger randomly selects
Nk iink
� �

time slots over iink ; i
out
k

h i
, and it charges the k-th EV on each

of the selected time slots.

4.1. Charging coordination for peak load reduction with a flat
electricity price

Fig. 5 shows the load profile of the proposed coordination
scheme for an objective of peak load reduction with a contracted
power capacity of Lcontract ¼ 5000 kW. Since the COC determines a
set of charging-scheduled EVs S ið Þ on every time slot i, the pro-
posed coordination scheme shows the perfect peak load reduction
to satisfy the contracted power capacity. On the other hand, the
ASAP scheme may not satisfy the contracted power capacity
between 5 pm and 10 pm due to the uncoordinated EV charging
load. Peak load is slightly over the contracted power capacity at
8 pm in the random distribution scheme, but, it shows the effect
to satisfy the contracted power capacity by randomly distributing
EV charging load.

For quantitative evaluation of the peak load reduction, we uti-
lize a metric of peak-to-average power ratio (PAPR), which is mea-
sured by the proportion of the maximum aggregate load power to
the average aggregate load power. Fig. 6 shows the PAPR of the
proposed coordination scheme, compared with that of the other
schemes as the contracted power capacity Lcontract increases. The
PAPR value of the proposed scheme slightly increases as Lcontract
increases, while the ASAP and random distribution schemes show
fixed PAPR values of 1.41 and 1.23, respectively, since they do not
control EV charging load according to the contracted power capac-
ity. This result implies that the proposed coordination scheme is
quite effective for reducing peak load level, compared to the other
schemes.

In another way, we can estimate the number of EVs accommo-
dated without exceeding contracted power capacity. As shown in
Fig. 7, the proposed coordination scheme shows the significantly
higher number of EVs accommodated without exceeding the con-
tracted power capacity, compared to other schemes. With a con-
tracted power capacity of 4550 kW, the proposed coordination
scheme can accommodate all 1000 EVs in the apartment complex.

However, when the COC coordinates all 1000 EVs with a smaller
contracted power capacity (e.g. 4400 kW–4500 kW), it may be
more difficult to satisfy all of the SoC requirements of all 1000
EVs. To measure this dissatisfied SoC level, let us define the SoC
dissatisfaction level of k-th EV as

uk , SoCtarget
k � SoCout

k ; ð6Þ
where SoCtarget

k and SoCout
k represent the target SoC level (0 � 1) and

the SoC level (0 � 1) at the departure of the k-th EV, respectively. It
is worth noting that the PAPR and the SoC dissatisfaction level have
a trade-off relationship with each other in the proposed coordina-
tion scheme. In other words, a smaller PAPR value may cause a lar-
ger SoC dissatisfaction level in the proposed scheme. On the other
hand, in ASAP and random distribution schemes, even though they
exceed the contracted power capacity with 1000 EVs, there is no
SoC dissatisfaction since they allow to charge all EVs regardless of
the contracted power capacity.

Fig. 8 shows the average SoC dissatisfaction level of all 1000 EVs
of the proposed coordination scheme as the contracted power
capacity Lcontract increases. The average SoC dissatisfaction level lin-
early decreases as Lcontract increases, and the proposed scheme
achieves a zero SoC dissatisfaction level over Lcontract ¼ 4550 kW.
For an Lcontract value of 4550 kW, the PAPR of the proposed scheme
in Fig. 6 is 1.11, which is reduced by 0.30 and 0.12, compared with
that of the ASAP scheme and the random distribution scheme,
respectively. In addition, Fig. 7 shows that the proposed scheme
can accommodate 1000 EVs, which is significantly higher than



Fig. 5. Load profiles with the flat electricity price.

Fig. 6. Peak-to-average power ratio (PAPR) in the apartment complex.

Fig. 7. Number of EVs accommodated without exceeding the contracted power
capacity.

Fig. 8. Average SoC dissatisfaction level of all EVs and the reduced driving range for
varying the contracted power capacity.
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120 and 240 EVs of the ASAP scheme and the random distribution
scheme, respectively. On the other hand, in order to transform the
SoC dissatisfaction level into the reduced driving range, we should
consider a specific EV model. For example, Hyundai Ioniq electric
car has a battery of 28 kWh, and the expected total driving range
is 169 km [39]. For this EV model, approximately a driving range
of 1.69 km is reduced by 1% SoC dissatisfaction level. In a general
form, the reduced driving range of the k-th EV due to a degradation
in the SoC dissatisfaction level is estimated as

Dk
reduced , uk 	 Tk; ð7Þ

where uk and Tk denote the SoC dissatisfaction level (0 � 1) and the
expected total driving range (km) of the k-th EV, respectively. Fig. 8
also shows the reduced driving range due to a degradation in the
SoC dissatisfaction level. Here, we assume the expected total driv-
ing range is 169 km with a battery capacity of 25 kWh on average.
Specifically, we can observe that an average SoC dissatisfaction of
4.65 % reduces the driving range by 7.86 km for a contracted power
capacity of 4500 kW.

Fig. 9 (a) and (b) show the distribution of the SoC dissatisfaction
levels and the distribution of the reduced driving ranges of all EVs,
respectively, when Lcontract ¼ 4500 kW. The worst SoC dissatisfac-
tion level is 14% (the reduced driving range: 23 km) with a proba-
bility of 0:025, but most of SoC dissatisfaction levels are lower than
1% (the reduced driving range: 1 km) with a probability of higher
than 0:8. It is worth noting that contracted power capacity of
Lcontract ¼ 4500 kW is a rather small value for the apartment com-
plex being considered. Thus, in practice, Lcontract ¼ 5000 kw could
be set in the apartment complex being considered, which does
not cause any SoC dissatisfaction or reduce the driving range. If
any SoC dissatisfaction level is caused by the charging coordina-
tion, the COC may provide EV with the remaining (incomplete)
charging time slots (Rk > 0) for some compensation in charging
payment.



Fig. 9. Distribution of SoC dissatisfaction levels and distribution of the reduced driving ranges when Lcontract ¼ 4500 kW.

Fig. 10. Average relative charging duration (RCD) factor values under the flat
electricity rate.

Table 2
Time-of-use (TOU) electricity price.

Price ($/kWh) Time

$0.428 14:00 � 21:00
$0.226 07:00 � 14:00 and 21:00 � 23:00
$0.099 23:00 � 07:00

Fig. 11. Load profiles under the TOU electricity rate.
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Next, let us define a relative charging duration (RCD) factor in
order to measure how fast each EV charging is done. The RCD factor
of the k-th EV is defined as follows:

sk ,
icomp:
k � iink
Nk iink

� � ; ð8Þ

where iink ; i
comp:
k , and Nk iink

� �
denote the arrival time slot, the charg-

ing completion time slot, and the required number of charging time
slots at the arrival, respectively.

Fig. 10 shows the average RCD factor of three priority groups in
the proposed coordination scheme, compared with the other
schemes. The ASAP scheme shows an average RCD factor of 1,
and the average RCD factor of the random distribution scheme is
the highest value of 3:61. In the proposed coordination scheme,
from the low-priority group to the high-priority group, the average
RCD factor decreases. Especially, the high-priority group achieves
an average RCD factor of approximately 1:13, which implies that
the EVs belonging to the high-priority group can complete their
charging services 1:13 times slower than the ASAP scheme, and
the mid- and low-priority groups achieve average RCD factor of
1:70 and 2:17, which implies that the charging completion times
of EVs in the mid- and low-priority groups are longer delayed for
more active participation in the charging coordination.

4.2. Charging coordination for minimizing the total apartment-level
charging payment with a TOU electricity rate

In this case, we utilize the same parameter values in Table 1 and
the same EV arrival distribution in SubSection 4.1. In addition to
those, Table 2 lists the TOU electricity price [40]. It is classified into
three different periods: peak load period, mid-load period, and off-



Fig. 12. Per-day total EV charging payment in the apartment complex.

Fig. 13. Average relative charging duration (RCD) factor values under the TOU rate.

H.S. Jang et al. / Energy & Buildings 223 (2020) 110155 9
peak load period. We evaluate the performance of the proposed EV
charging coordination mechanism in terms of the total apartment-
level charging payment.

Fig. 11 shows the load profile of the proposed apartment-level
EV charging coordination scheme for minimizing the total charging
payment under the TOU electricity price. The proposed coordina-
tion scheme significantly restricts EV charging load during the
peak load period (16 : 00 � 21 : 00) in order to minimize the total
EV charging payment, and the restricted EV charging load is shifted
to the mid-load period and the off-peak load period.

Fig. 12 compares the per-day total apartment-level charging
payment, which is the result from the EV load profile in Fig. 11.
The total charging payment of the proposed scheme amounts to
be $1796 with the SoC dissatisfaction level of 0%. This result shows
that the proposed coordination scheme can save approximately
$2290 and $692 on a single day, compared to those of the ASAP
scheme and the random distribution scheme, respectively.

Fig. 13 shows the average RCD factor of three priority groups in
the proposed coordination scheme for minimizing the charging
payment, compared with those of the other schemes. The ASAP
and random distribution schemes show the same average RCD fac-
tor values as the cases with the flat electricity rate. However, the
RCD factor of the high-, mid-, and low-priority groups of the pro-
posed coordination scheme with TOU electricity price increase by
195%, 165%, and 150%, respectively, compared with the RCD factor
values with the flat electricity rate in Fig. 10,
5. Conclusion

In this paper, we proposed an apartment-level EV charging
coordination scheme, in which the charging operation center
(COC) effectively coordinates a large group of EVs in an apartment
complex. As case studies, we showed the advantages of the
proposed EV charging coordination scheme in terms of peak load
reduction and apartment-level charging payment minimization.
As a result, the proposed EV charging coordination system can be
used to manage an apartment-level power grid more stable, and
EV owners in this apartment complex can obtain more economic
benefits by participating in the EV charging coordination.
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